Cartes topologiques de Kohonen
En 1984, un statisticien propose une méthode totalement nouvelle pour représenter les réseaux de neurones, les cartes auto-adaptative de Kohonen. Ablaye nous présente cette méthode appliquée à la classification.
En 1984, un statisticien propose une méthode totalement nouvelle pour représenter les réseaux de neurones, les cartes auto-adaptative de Kohonen. Ablaye nous présente cette méthode appliquée à la classification.
Dans cette suite d’article, nous allons voir ensemble l’architecture détaillée du Framework Apache Spark, comprendre les différentes briques qui forment le Framework et voir comment on peut déployer et exécuter des traitements Spark avec les différents clusters manager.
Nous allons commencer dans cet article par l’architecture du Framework et comprendre comment fonctionne les traitements sur ce Framework.
Si vous travaillez comme moi dans un environnement mêlant data engineers, data scientists et data analysts et que le choix de votre plateforme s’est porté sur la plateforme cloud de Google, il y a fort à parier que vous ayez accès à beaucoup de données sous BigQuery.
Pour le salon Big Data 2017, j’ai décidé cette année d’assister aux conférences payantes, en espérant y voir plus de choses techniques. Bien m’en a pris, ce sont celles qui m’ont le plus intéressé. J’y ai découvert un tout jeune top projet Apache, Apache Beam, un modèle de programmation qui permet aux développeurs de créer des pipelines de traitement de la donnée sans se soucier du moteur d’exécution.
Les domaines d’application du Transfer Learning sont nombreux. Principalement, les méthodes de transfert de connaissance sont très souvent utilisées pour la reconnaissance d’image ainsi que le traitement automatique du langage. Ces deux domaines d’apprentissage sont très complexes et chronophages. C’est pour cela que le Transfer Learning apporte un souffle nouveau pour tenter d’optimiser ces traitements en exploitant au maximum des modèles déjà entraînés. Nous allons voir ici plusieurs méthodes de Transfert Learning.
Machine Learning, Deep Learning, Reinforcement Learning, Collaborative Learning; vous pensiez avoir entendu toutes les combinaisons du mot Learning ? C’est bien évidemment avant de connaitre le… Transfer Learning ! Et …